Link concordances as surfaces in 4-space and the 4-dimensional Milnor invariants
نویسندگان
چکیده
Fixing two concordant links in $3$--space, we study the set of all embedded concordances between them, as knotted annuli $4$--space. When regarded up to surface-concordance or link-homotopy, $\mathcal{C}(L)$ from a link $L$ itself forms group. In order investigate these groups, define Milnor-type invariants $\mathcal{C}(L)$, which are integers defined modulo certain indeterminacy given by Milnor $L$. We show particular that, for slice $L$, classify link-homotopy.
منابع مشابه
Towards Invariants of Surfaces in 4-space via Classical Link Invariants
In this paper, we introduce a method to construct ambient isotopy invariants for smooth imbeddings of closed surfaces into 4-space by using hyperbolic splittings of the imbedded surfaces and an arbitrary given isotopy or regular isotopy invariant of classical knots and links in 3-space. Using this construction, adopting the Kauffman bracket polynomial as an example, we produce some invariants.
متن کاملhyperruled surfaces in minkowski 4-space
in this paper, the time-like hyperruled surfaces in the minkowski 4-space and their algebraicinvariants are worked. also some characteristic results are found about these algebraic invariants.
متن کاملMilnor ’ S Isotopy Invariants and Generalized Link
It has long been known that a Milnor invariant with no repeated index is an invariant of link homotopy. We show that Milnor’s invariants with repeated indices are invariants not only of isotopy, but also of self Ck-moves. A self Ck-move is a natural generalization of link homotopy based on certain degree k clasper surgeries, which provides a filtration of link homotopy classes.
متن کاملParallel Transport Frame in 4 -dimensional Euclidean Space
In this work, we give parallel transport frame of a curve and we introduce the relations between the frame and Frenet frame of the curve in 4-dimensional Euclidean space. The relation which is well known in Euclidean 3-space is generalized for the rst time in 4-dimensional Euclidean space. Then we obtain the condition for spherical curves using the parallel transport frame of them. The conditi...
متن کاملSpacelike Willmore surfaces in 4-dimensional Lorentzian space forms
Spacelike Willmore surfaces in 4-dimensional Lorentzian space forms, a topic in Lorentzian conformal geometry which parallels the theory of Willmore surfaces in S, are studied in this paper. We define two kinds of transforms for such a surface, which produce the so-called left/right polar surfaces and the adjoint surfaces. These new surfaces are again conformal Willmore surfaces. For them holds...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indiana University Mathematics Journal
سال: 2022
ISSN: ['1943-5258', '0022-2518', '1943-5266']
DOI: https://doi.org/10.1512/iumj.2022.71.9299